Abstract

We report a high-performance 25 km Brillouin-loss-based distributed fiber sensor through optimizing system parameters. First, the Brillouin spectrum distortion and measurement error induced by the excess amplification on probe pulse are investigated, and the results indicate that a low continuous-wave pump power is essential to decrease the measurement error. Then an optimal pulse pair is determined through the differential Brillouin gain evolution along the entire sensing fiber in a differential pulse-width pair Brillouin optical time domain analysis. Using dispersion-shifted fiber to allow a high-power probe pulse, we realize a 25 km sensing range with a spatial resolution of 30 cm and a strain accuracy of ±20 με, which we believe is the best performance in such a length, to the best of our knowledge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.