Abstract
The problem with increasing test application time for testing core-based system-on-chip (SOC) designs is addressed with test architecture design and test scheduling. The scan-chains at each core are configured into a set of wrapper-chains, which by a core wrapper are connected to the test access mechanism (TAM), and the tests are scheduled in such a way that the test time is minimized. In this paper, we make use of reconfigurable core wrappers that, in contrast to standard wrappers, can dynamically change (reconfigure) the number of wrapper-chains during test application. We show that by using reconfigurable wrappers the test scheduling problem is equivalent to independent job scheduling on identical machines, and we make use of an existing preemptive scheduling algorithm that produces an optimal solution in linear time (O(n); n is the number of tests). We also show that the problem can be solved without preemption, and we extend the algorithm to handle: 1) test conflicts due to interconnection tests and 2) cases when the test time of a core limits an optimal usage of the TAM. The overhead in logic is given by the number of configurations, and we show that the upper-bound is three configurations per core. We compare the proposed approach with the existing technique and show, in comparison, that our technique is 2% less from lower bound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.