Abstract
This paper presents a generalized formulation to determine the optimal operating strategy and cost optimization scheme as well as the reduction of the emissions for a MicroGrid (MG). Multiobjective (MO) optimization is applied to the environmental/economic problem of the MG. The proposed problem is formulated as a nonlinear constrainted MO optimization problem. Prior to the optimization, a system model components from some real manufactural data are constructed. The model takes into consideration the operation and maintenance costs as well as the emissions NO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> , SO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> , and CO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> reduction. The MG considered in this paper consists of a wind turbine, a micro turbine, a diesel generator, a photovoltaic array , and fuel cell. The optimization is aimed at minimizing the cost function of the system while constraining it to meet the costumer demand and safety of the system.The results demonstrate the efficiency of the proposed approach to satisfy the load and to reduce the cost and the emissions in one single run.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.