Abstract

Molten-salt packed-bed thermal energy storage using thermocline technology is more cost-competitive than the conventional two-tank thermal energy storage, due to its integrated design and the employment of a low-cost packed-bed. However, such a storage configuration suffers the main drawback of a low capacity factor when applied to concentrating solar power because of the adoption of conservative cut-off temperatures. The present work evaluates the feasibility of taking less conservative cut-off temperatures to improve the utilization of the packed-bed thermal energy storage from the perspectives of a system-level operation and storage economy. The investigations are carried out on two levels. The first-level investigation reveals the effects of both the charging and discharging cut-off temperature on the thermal performance of the packed-bed thermal energy storage under ideal operating conditions. Three typical packed-bed configurations are involved. The results show that the capacity factor of the packed-bed thermal energy storage increases as the charging cut-off temperature increases and the discharging cut-off temperature decreases, especially for the configurations using latent-heat when the adopted cut-off temperatures jump over the phase change points of the encapsulated phase change materials. The second-level investigation discusses the impacts of different levels of deep charges (using high charging cut-off temperatures) on the scale design of the packed-bed thermal energy storage, the daily operation of the low temperature molten-salt pump (LT-pump) and the central receiver of a 100 MWe conventional concentrating solar power tower plant. The results indicate that a deeper charge operation is always accompanied with a smaller required packed-bed size as well as a higher required delivery capacity and higher pressure head of the LT-pump and that it always results in a larger daily pumping consumption, a higher peak inlet temperature ramping rate and a higher receiver pressure drop. The maximum allowable charging cut-off temperature is identified to be 500 °C for each packed-bed configuration, according to the operating limitations on the pump and receiver. Moreover, a cost analysis is carried out to obtain the optimum charging cut-off temperature for each packed-bed configuration. The obtained results show that performing deep charges with the cost-optimized charging cut-off temperatures can effectively improve the cost competitiveness of the molten-salt packed-bed TES integrated into concentrating solar power plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call