Abstract

The solid oxide electrolysis cells (SOEC) technology is a promising solution for hydrogen production with the highest electrolysis efficiency. Compared with its counterparts, operating at high temperature means that SOEC requires both power and heat. To investigate the possibility of coupling external waste heat with the SOEC system, and the temperature & quantity requirement for the external waste heat, a universal SOEC system operating at atmospheric pressure is proposed, modeled and analyzed, without specific waste heat source assumption such as solar, geothermal or industrial waste heat. The SOEC system flow sheet is designed to create opportunity for external waste heat coupling. The results show that external waste heat is required for feed stock heating, while the recommended coupling location is the water evaporator. The temperature of the external waste heat should be above 130 °C. For an SOEC system with 1 MW electrolysis power input, the required external waste heat is about 200 kW. When the stack operates at thermoneutral state and 800 °C, the specific energy consumption is 3.77 kWh/Nm3-H2, of which electric power accounts for 84% (3.16 kWh/Nm3-H2) and external waste heat accounts for 16% (0.61 kWh/Nm3-H2). The total specific energy consumption remains almost unchanged when operating the SOEC stack around the thermoneutral condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.