Abstract

For sensor nodes deployed at small distances, computation energy along with radio energy determines the battery life. We have proposed a system-level design space exploration methodology in [1] for searching an energy-efficient error-correcting code (ECC). This methodology takes into account the computation and the radio energy in an integrated manner. In this paper, we validate this methodology by deploying the Imote2 nodes and measuring energy values under different operating modes, e.g., with and without ECC. In this process, we propose a validation framework and node energy model. Experimental results validate the methodology and show that with ECC we can save up to 14% transmitter energy under a certain set of conditions. The main contribution of this paper is that it establishes experimentally that our methodology is effective in exploration of various node configurations and finding an energy-efficient solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.