Abstract
Neural information processing involves a series of nonlinear dynamical input/output transformations between the spike trains of neurons/neuronal ensembles. Understanding and quantifying these transformations is critical both for understanding neural physiology such as short-term potentiation and for developing cognitive neural prosthetics. A novel method for estimating Volterra kernels for systems with point-process inputs and outputs is developed based on elementary probability theory. These Probability Based Volterra (PBV) kernels essentially describe the probability of an output spike given q input spikes at various lags t1, t2, …, tq. The PBV kernels are used to estimate both synthetic systems where ground truth is available and data from the CA3 and CA1 regions rodent hippocampus. The PBV kernels give excellent predictive results in both cases. Furthermore, they are shown to be quite robust to noise and to have good convergence and overfitting properties. Through a slight modification, the PBV kernels are shown to also deal well with correlated point-process inputs. The PBV kernels were compared with kernels estimated through least squares estimation (LSE) and through the Laguerre expansion technique (LET). The LSE kernels were shown to fair very poorly with real data due to the large amount of input noise. Although the LET kernels gave the best predictive results in all cases, they require prior parameter estimation. It was shown how the PBV and LET methods can be combined synergistically to maximize performance. The PBV kernels provide a novel and intuitive method of characterizing point-process input-output nonlinear systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.