Abstract

This paper presents the empirical modeling of the gaseous pilot plant which is a kind of interacting series process with presence of nonlinearities. In this study, the discrete-time identification approach based on subspace method with N4SID algorithm is applied to construct the state space model around a given operating point, by probing the system in open-loop with variation of input signals. Three practical approaches are used and their performances are compared to obtain the most suitable approach for modeling of such a system. The models are also tested in the real-time implementation of a linear model predictive control. The selected model is able to well reproduce the main dynamic characteristics of gaseous pilot plant in open loop and produces zero steady-state errors in closed loop control system. Several issues concerning the identification process and the construction of MIMO state space model are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.