Abstract
System identification of highly nonlinear dynamical systems, important for reducing time complexity in long simulations, is not trivial using more traditional methods such as recurrent neural networks (RNNs) trained with back-propagation through time. The recently introduced Reservoir Computing (RC)∗∗The term reservoir used here is not related to reservoirs in oil and gas industry. approach to training RNNs is a viable and powerful alternative which renders fast training and high performance. In this work, a single Echo State Network (ESN), a flavor of RC, is employed for system identification of a vertical riser model which has stationary and oscillatory signal behaviors depending of the production choke opening input variable. It is shown experimentally that these different behaviors are learned by constraining the high-dimensional reservoir states to attractor subspaces in which the specific behavior is represented. Further experiments show the stability of the identified system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.