Abstract

Identification of networked systems over communication links with packet losses is considered. It is assumed that there is no connection from the actuators to the system identifier such that no information is available on loss of data packets carrying the actuation signals. While the packet loss occurrences in the sensor links are naturally detectable by the system identifier as the receiving node, the packet loss occurrences in the actuation paths are not directly detectable. The existing system identification methods fail to be applicable without the information on packet loss occurrences. Presenting a solution for this issue is the objective of the present work. Two recursive algorithms are proposed to solve the problem in real time. For this purpose, ARMAX input–output representations of the system with Markovian jumping modes are developed. Then, filters are designed for estimation of the packet loss occurrences. The estimated mode is used in the recursive algorithms for identification of the whole system based on the maximum likelihood approach. A main algorithm and its simplified version are proposed that are capable of finding the various kinds of system parameters including the physical plant parameters and the communication mode transition probabilities. Effectiveness of the algorithms is verified through simulation examples where the system performance is evaluated and compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.