Abstract
Behavioral modification using active instructions is a promising interventional method to optimize crowd evacuations. However, existing research efforts have been more focused on eliciting general principles of optimal behavior than providing explicit mechanisms to dynamically induce the desired behaviors, which could be claimed as a significant knowledge gap in crowd evacuation optimization. In particular, we propose using dynamic distance-keeping instructions to regulate pedestrian flows and improve safety and evacuation time. We investigate the viability of using Model Predictive Control (MPC) techniques to develop a behavioral controller that obtains the optimal distance-keeping instructions to modulate the pedestrian density at bottlenecks. System Identification is proposed as a general methodology to model crowd dynamics and build prediction models. Thus, for a testbed evacuation scenario and input–output data generated from designed microscopic simulations, we estimate a linear AutoRegressive eXogenous model (ARX), which is used as the prediction model in the MPC controller. A microscopic simulation framework is used to validate the proposal that embeds the designed MPC controller, tuned and refined in closed-loop using the ARX model as the Plant model. As a significant contribution, the proposed combination of MPC control and System Identification to model crowd dynamics appears ideally suited to develop realistic and practical control systems for controlling crowd motion. The flexibility of MPC control technology to impose constraints on control variables and include different disturbance models in the prediction model has confirmed its suitability in the design of behavioral controllers in crowd evacuations. We found that an adequate selection of output disturbance models in the predictor is critical in the type of responses given by the controller. Interestingly, it is expected that this proposal can be extended to different evacuation scenarios, control variables, control systems, and multiple-input multiple-output control structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Part C: Emerging Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.