Abstract
Piezoelectric elements (PEMs) are used in a variety of applications. In this paper, we developed a full analytical model and a simple system identification (SI) method of a piezoelectric actuator, which includes piezostack elements and a three-stage amplification mechanism. The model was derived separately for each unit of the system. Next, the units were combined, while taking into account their coupling. The hysteresis phenomenon, which is significant in piezoelectric materials, is described extensively. The theoretical model was verified in a laboratory setup. This setup includes a piezoelectric actuator, measuring devices and an acquisition system. The measured results were compared to the theoretical results. Some of the most well-known forms of system identification are shown briefly, while a new and simple algorithm is described systematically and verified by the model. The main advantage of this work is to provide a solid background and domain knowledge of modelling and system identification methods for further investigations in the field of piezoelectric actuators. Due to their simplicity, both the model and the system identification method can be easily modified in order to be applied to other PEMs or other amplification mechanism methods. The main novelty of this work lies in applying a simple system identification algorithm while using the system-level approach for piezoelectric actuators. Lastly, this review work is concluded and some recommendations for researchers working in this area are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.