Abstract
NdFeB magnets are widely used in various applications including electric and hybrid vehicles, wind turbines, and computer hard drives. They contain approximately 31–32 wt% Rare Earth Elements (REEs), mainly neodymium (Nd) and praseodymium (Pr), and are produced by molten salt electrolysis using fluoride electrolytes. However, anode passivation or anode effect may occur, generating greenhouse gases if insufficient amounts of metal oxides are available in the system. Therefore, in this study, a dynamic model of the electrochemical process was developed to estimate the system variables and predict the anode effect using several system identification methods. The Transfer Function (TF) estimation, Auto-Regressive with Extra inputs (ARX), Hammerstein-Weiner (HW), and Artificial Neural Network (ANN) models were used, and their results were compared based on the occurrence of the anode effect. The best model achieved an average accuracy of 96% in predicting the process output.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.