Abstract
In this paper we present an overview of a system we have been developing for the past several years for efficient image categorization and retrieval in large radiograph archives. The methodology is based on local patch representation of the image content, using a bag of visual words approach and similarity-based categorization with a kernel based SVM classifier. We show an application to pathology-level categorization of chest x-ray data, the most popular examination in radiology. Our study deals with pathology detection and identification of individual pathologies including right and left pleural effusion, enlarged heart and cases of enlarged mediastinum. The input from a radiologist provided a global label for the entire image (healthy/pathology), and the categorization was conducted on the entire image, with no need for segmentation algorithms or any geometrical rules. An automatic diagnostic-level categorization, even on such an elementary level as healthy vs pathological, provides a useful tool for radiologists on this popular and important examination. This is a first step towards similarity-based categorization, which has a major clinical implications for computer-assisted diagnostics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.