Abstract

Abstract A reliable system simulation combining socio-economic development with water environment and comprehensively reflect a watershed's dynamic features is crucial. In this study, a complex system dynamics model is constructed to evaluate dynamic changes of socio-economic development and ecological environment of Weihe River Basin (WHR). Development trends of the population, economy, land resources, water demand and supply, water environment and water pollution and management are obtained from 2005 to 2030 through scenarios analysis representing different regional development orientations, namely, population growth (S1), economic leading (S2), resources saving (S3), environment leading (S4), collaborative development (S5). Compared with other scenarios, the total population and GDP will, respectively, reach 3,716.55 × 104 person and 40,077.30 × 108 yuan, and the gap between demand and supply and the amount of water pollution will, respectively, narrow to 0.56 × 108 and 12.26 × 108 cubic meters in collaborative development scenario (S5). The results reveal the collaborative development scenario (S5) can achieve not only steady population and economy growth, as well as narrow down the gap between water supply and demand, but also optimize watershed environment management of the WHR. Thus, the system dynamics model used in our research provides a powerful tool for assisting decision-making on issues of coordinative socio-economic development, environmental health protection, water resources conservation, etc., in a river basin area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call