Abstract

PurposeSystem dynamics has several applications in the built environment, and few studies indicate that it has potential in evaluating sustainability. Sustainability in the built environment involves numerous entities and multiple trade-offs. Hence, a Multi-Criteria Decision-Making (MCDM) method is ideal for promoting sustainability-based decision-making in the built environment. Therefore, this study integrates system dynamics with an MCDM method to enable the sustainability assessment by capturing the time-induced dynamic changes affecting long time sustainability performance of buildings.Design/methodology/approachConventional sustainability assessment tools in the built environment lack a comprehensive evaluation that balances the needs of the society, economy and environment. This study develops a system dynamics-based framework to enable sustainability-conscious decision-making and policy analysis in the built environment.FindingsVarious material, technology and water-related policies specific to the buildings are investigated for a case study building. It is found that the effect of penetration of renewable energy technology to the tune of 80% and above in the energy mix is a much superior policy in sustainability improvement in comparison to material and water-related policies. The study also demonstrates the effect of weights assigned for the different indicators on sustainability-based decisions.Originality/valueThe study provides a methodological framework for a sustainability-based decision support system for the built environment that enables dynamic performance evaluation by coupling system dynamics with the MCDM. This coupling further strengthens system dynamics as a decision-making and policy analysis for sustainability evaluation in the built environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.