Abstract

Current and future application scenarios for mobile robots deal with increased requirements regarding autonomy and flexibility in the locomotor system. To cope with these demands, a high sensor quantity and quality allows us to perform robust locomotion. The authors present a hominid robotic system that is equipped with multi-point-contact feet and an active artificial spine to incorporate extended sensing and locomotion capabilities for walking robots. In the proposed robotic system, the front and rear part are connected via an actuated spinal structure with six degrees of freedom. To increase the robustness of the system's locomotion in terms of traction and stability, a footlike structure equipped with various sensors has been developed. Altogether, the robot embodies more than 330 sensors. In terms of distributed local control, the structures feature their own local intelligence and are as autonomous as possible regarding sensing, sensor preprocessing, control, and communication. This allows the robot to respond to external disturbances with minor latency. Within this paper, the proposed robotic system and its distributed and hierarchical control method are presented. To validate the electromechanical and software approach, the authors present results verified experimentally in different environments (in- and outdoor) with differing walking speeds on various substrates and in varying inclinations from −20∘ to 20°. The results show that the presented approach is viable and improves the flexibility of the locomotor system. A hominid design was chosen in order to perform various types of locomotion. To demonstrate the entire functionality of the developed hardware, two different motion modes (quadrupedal and bipedal locomotion) are investigated. This also includes a stable transition from a four-legged posture to an upright posture and vice versa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.