Abstract
This poster presents system architecture, software stack, and performance analysis for SK hynix’s very first GDDR6-based processing-in-memory (PIM) product sample, called Accelerator-in-Memory (AiM).AiM is designed for the in-memory acceleration of matrix-vector product operations, which are commonly found in machine learning applications. The strength of AiM primarily comes from the two design factors, which are 1) all-bank operation support and 2) extended DRAM command set. All-bank operations allow AiM to fully utilize the abundant internal DRAM bandwidth, which makes it an attractive solution for memory-bound applications. The extended command set allows the host to address these new operations efficiently and provides a clean separation of concerns between the AiM architecture and its software stack design.We present a dedicated FPGA-based reference platform with a software stack, which is used to validate AiM design and evaluate its system-level performance. We also demonstrate FMC-based AiM extension cards that are compatible with the off-the-shelf FPGA boards and serve as an open research platform allowing potential collaborators and academic institutes to access our hardware and software systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.