Abstract

This paper considers dynamical transient effects in the physical layer of an optical circuit-switched wavelength-division-multiplexed network. These transients of the average transmission power have millisecond time scales. Instead of studying detailed nonlinear dynamics of the network elements, such as optical line amplifiers, a linearized model of the dynamics around a given steady state is considered. System-level analysis in this paper uses modern control theory methods and handles nonlinearity as uncertainty. The analysis translates requirements on the network performance into the requirements to the network elements. These requirements involve a few gross measures of performance for network elements and do not depend on the circuit switching state. One such performance measure is the worst amplification gain for all harmonic disturbances of the average transmission power. Another is cross-coupling of the wavelength channel power variations. The derived requirements guarantee system-level performance for all network configurations and can be used for specifying optical components and subsystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.