Abstract

Loop Heat Pipes (LHP) are used for precise temperature control for NASA Goddard Space Flight Center's Geoscience Laser Altimeter System (GLAS) Instrument in a widely varying LEO thermal environment. Two propylene LHPs are utilized to provide separate thermal control for the Nd:YAG Lasers and the remaining avionics/detector components suite. Despite a rigorous engineering development and test plan to demonstrate the performance in the restrictive GLAS design, the flight units failed initial thermal vacuum acceptance testing at GSFC. Subsequent investigation revealed that compromises in the mechanical packaging of these systems resulted in inadequate charge levels for a concentric wick LHP. The redesign effort included larger compensation chambers that provide more fluid to the wick for start-up scenarios and highlighted the need to fully understand the limitations and accommodation requirements of new technologies in a system design application. Once again, seemingly minor departures from heritage configurations and limited resources led to performance and operational issues. This paper provides details into the GLAS LHP engineering development program and acceptance testing of the flight units, including the redesign effort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.