Abstract

BackgroundSyringin, also called eleutheroside B, is a main bioactive phenolic glycoside in Acanthopanax senticosus (Rupr. et Maxim.) Harms. Based on the “kidney dominates bone” theory of TCM, A. senticosus can strengthen bone and Syringin may be one of the responsibilities. PurposeThe objectives of this study were to estimate the osteoporotic activity of Syringin and reveal the possible molecular mechanisms in vivo. MethodsSixty female ICR mice were randomly assigned into sham operated group (SHAM, treated with vehicle) and five ovariectomized subgroups (n = 10 each), treated with vehicle as OVX group, estradiol valerate (EV, 1 mg/kg/day) as positive group, and Syringin (10, 20 and 40 mg/kg/day) as low, moderate and high dosage groups. The therapeutic effect of Syringin against osteoporosis was systematically analyzed by determining the bone mineral density (BMD), bone biomechanical properties, bone microarchitecture and serum biochemical parameters, and the molecular mechanism was also evaluated. ResultsAfter three months of orally administrated intervention, Syringin (10, 20 and 40 mg/kg/day) significantly improved the BMD, bone maximum load and trabecular bone microarchitecture in ovariectomized mice, evidenced by the increased bone mineral content, tissue mineral content, tissue mineral density, trabecular thickness and trabecular number, as well as the decreased trabecular separation in OVX mice. Meanwhile, the activities of tartrate-resistant acid phosphatase, deoxypyridinoline and cathepsin K in OVX mice were also inhibited by Syringin, while the increased body weight and decreased uterus weight seemed not influenced by Syringin administration. Concerning the underlying molecular mechanisms, Syringin significantly downregulated the expression of tumor-necrosis factor receptor-associated factor 6 (TRAF6), nuclear factor kappa B (NF-κB) and receptor activator of nuclear factor kappa B ligand (RANKL) proteins levels, upregulated the expression of osteoprotegerin (OPG), phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) levels, suggesting that Syringin prevented bone lost by TRAF6-mediated inhibition of NF-κB and stimulation of PI3K/AKT, and subsequently increasing the OPG/RANKL ratio and inhibiting the osteoclastogenesis, finally promoting bone formation. ConclusionsAll of the data implied Syringin possessed the potent anti-osteoporosis activity on ovariectomized mice, and the underlying molecular mechanism may be related to the NF-κB and PI3K/AKT signaling pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.