Abstract

By utilizing the high gas permeability of polydimethylsiloxane (PDMS), a simple syringe-assisted pumping method was introduced. A dead-end microfluidic channel was partially surrounded by an embedded microchamber, with a thin PDMS wall isolating the dead-end channel and the embedded microchamber. A syringe was connected with the microchamber port by a short tube, and the syringe plunger was manually pulled out to generate low pressure inside the microchamber. When sample liquid was loaded in the inlet port, air trapped in the dead-end channel would diffuse into the surrounding microchamber through the PDMS wall, creating an instantaneous pumping of the liquid inside the dead-end channel. By only pulling the syringe manually, a constant low flow with a rate ranging from 0.089 to 4 nl/s was realized as functions of two key parameters: the PDMS wall thickness and the overlap area between the dead-end channel and the surrounded microchamber. This method enabled point-of-care pumping without pre-evacuating the PDMS devices in a bulky vacuum chamber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call