Abstract

Early diabetic retinopathy (DR) is characterized by chronic inflammation, excessive oxidative stress, and retinal microvascular damage. Syringaresinol (SYR), as a natural polyphenolic compound, has been proved to inhibit many disease progression due to its antiinflammatory and antioxidant properties. The present study focuses on exploring the effect of SYR on hyperglycemia-induced early DR as well as the underlying mechanisms. Wild-type (WT) and nuclear factor erythroid 2-related factor 2 (Nrf2)-knockout C57BL/6 mice of type 1 diabetes and high glucose (HG)-induced RF/6A cells are used as in vivo and in vitro models, respectively. This study finds that SYR protects the retinal structure and function in diabetic mice and reduces the permeability and apoptosis of HG-treated RF/6A cells. Meanwhile, SYR distinctly mitigates inflammation and oxidative stress in vivo and vitro. The retinal microvascular damages are suppressed by SYR via downregulating hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway. Whereas, SYR-provided protective effects are diminished in Nrf2-knockout mice, indicating that SYR improves DR progression by activating Nrf2. Similarly, SYR cannot exert protective effects against HG-induced oxidative stress and endothelial injury in small interfering RNA (siRNA)-Nrf2-transfected RF/6A cells. In summary, SYR suppresses oxidative stress via activating Nrf2 antioxidant pathway, which ameliorates retinal microvascular damage by downregulating HIF-1α/VEGF, thereby alleviating early DR progression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.