Abstract
Direct interspecies electron transfer (DIET) may prevail in microbial communities that show methanogenesis and anaerobic methane oxidation and can be an electron source to support anaerobic photosynthesis. Previous mutagenic studies on cocultures of defined Geobacter species indicate that both conductive pili and extracellular cytochromes are essential for DIET. However, the actual functional role of the pili in DIET is uncertain, as the pilus mutation strategy used in these studies affected the extracellular cytochrome profile. Here we repressed the function of pili by deleting the pilus polymerization motor PilB in both Geobacter species. The PilB mutation inhibited the pilus assembly but did not alter the pattern of extracellular cytochromes. We report that the two pilus-free Geobacter species can form aggregates and grow syntrophically with DIET. The results demonstrate that the Gmet_2896 cytochrome of Geobacter metallireducens plays a key role in DIET and that conductive pili are not necessary to facilitate DIET in cocultures of Geobacter species, and they suggest cytochromes by themselves can meditate DIET, deepening the understanding of DIET.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.