Abstract

Gene therapy directly targets mutations causing disease, allowing for a specific treatment at a molecular level. Adeno-associated virus (AAV) has been of increasing interest as a gene delivery vehicle, as AAV vectors are safe, effective, and capable of eliciting a relatively contained immune response. With the recent FDA approval of two AAV drugs for treating rare genetic diseases, AAV vectors are now on the market and are being further explored for other therapies. While showing promise in immune privileged tissue, the use of AAV for systemic delivery is still limited due to the high prevalence of neutralizing antibodies (nAbs). To avoid nAb-mediated inactivation, engineered AAV vectors with modified protein capsids, materials tethered to the capsid surface, or fully encapsulated in a second, larger carrier have been explored. Many of these engineered AAVs have added benefits, including avoided immune response, overcoming the genome size limit, targeted and stimuli-responsive delivery, and multimodal therapy of two or more therapeutic modalities in one platform. Native and engineered AAV vectors have been tested to treat a broad range of diseases, including spinal muscular atrophy, retinal diseases, cancers, and tissue damage. This review will cover the benefits of AAV as a promising gene vector by itself, the progress and advantages of engineered AAV vectors, particularly synthetically engineered ones, and the current state of their clinical translation in therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.