Abstract
Conformationally constrained peptidomimetics could be of great value in the design of vaccines targeting protective epitopes on viral and bacterial pathogens. But the poor immunogenicity of small synthetic molecules represents a serious obstacle for their use in vaccine development. Here, we show how a constrained epitope mimetic can be rendered highly immunogenic through multivalent display on the surface of synthetic virus-like nanoparticles. The target epitope is the V3 loop from the gp120 glycoprotein of HIV-1 bound to the neutralizing antibody F425-B4e8. The antibody-bound V3 loop adopts a β-hairpin conformation, which is effectively stabilized by transplantation onto a D-Pro-L-Pro template. The resulting mimetic after coupling to synthetic virus-like particles elicited antibodies in rabbits that recognized recombinant gp120. The elicited antibodies also blocked infection by the neutralization sensitive tier-1 strain MN of HIV-1, as well as engineered viruses with the V1V2 loop deleted; this result is consistent with screening of V3 by the V1V2 loop in intact trimeric viral gp120 spikes. The results provide new insights into HIV-1 vaccine design based on the V3 loop, and illustrate how knowledge from structural biology can be exploited for the design of constrained epitope mimetics, which can be delivered to the immune system by using a highly immunogenic synthetic nanoparticle delivery system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.