Abstract

Rational design approaches for the regulation of gene expression are expanding the synthetic biology toolbox. However, only a few tools for regulating gene expression at the translational level have been developed. Here, we devise an approach for translational regulation using the MS2 and PP7 aptamer and coat-protein pairs in Escherichia coli. The aptamers are used as operators in transcription units that encode proteins fused to their cognate coat proteins, which leads to self-repression. RNA origami scaffolds that contain up to four aptamers serve as an alternate binder to activate translation. With this system, we demonstrate that the increase in expression of a reporter protein is dependent on both the concentration and number of aptamers on RNA origami scaffolds. We also demonstrate regulation of multiple proteins using a single MS2 coat protein fusion and apply this method to regulate the relative expression of enzymes of the branched pathway for deoxyviolacein biosynthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.