Abstract

The widening gap between CPU and memory speed has made caches an integral feature of modern high- performance processors. The high degree of configurability of cache memory can require extensive design space exploration and is generally performed using execution-driven or trace-driven simulation. Execution-driven simulators can be highly accurate but require a detailed development flow and may impose performance costs. Trace-driven simulators are an efficient alternative but maintaining large traces can present storage and portability problems. We propose a distribution-driven trace generation methodology as an alternative to traditional execution- and trace- driven simulation. An adaptation of the Least Recently Used Stack Model is used to concisely capture the key locality features in a trace and a two-state Markov chain model is used for trace generation. Simulation and analysis of a variety of embedded application traces demonstrate the cacheability characteristics of the synthetic traces are generally very well preserved and similar to their real trace, and we also highlight the potential performance improvement over ISA emulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.