Abstract

BackgroundTightly regulated gene networks, precisely controlling the expression of protein molecules, have received considerable interest by the biomedical community due to their promising applications. Among the most well studied inducible transcription systems are the tetracycline regulatory expression systems based on the tetracycline resistance operon of Escherichia coli, Tet-Off (tTA) and Tet-On (rtTA). Despite their initial success and improved designs, limitations still persist, such as low inducer sensitivity. Instead of looking at these networks statically, and simply changing or mutating the promoter and operator regions with trial and error, a systematic investigation of the dynamic behavior of the network can result in rational design of regulatory gene expression systems. Sophisticated algorithms can accurately capture the dynamical behavior of gene networks. With computer aided design, we aim to improve the synthesis of regulatory networks and propose new designs that enable tighter control of expression.ResultsIn this paper we engineer novel networks by recombining existing genes or part of genes. We synthesize four novel regulatory networks based on the Tet-Off and Tet-On systems. We model all the known individual biomolecular interactions involved in transcription, translation, regulation and induction. With multiple time-scale stochastic-discrete and stochastic-continuous models we accurately capture the transient and steady state dynamics of these networks. Important biomolecular interactions are identified and the strength of the interactions engineered to satisfy design criteria. A set of clear design rules is developed and appropriate mutants of regulatory proteins and operator sites are proposed.ConclusionThe complexity of biomolecular interactions is accurately captured through computer simulations. Computer simulations allow us to look into the molecular level, portray the dynamic behavior of gene regulatory networks and rationally engineer novel ones with useful applications. We are able to propose, test and accept or reject design principles for each network. Guided by simulations, we develop a set of design principles for novel tetracycline-inducible networks.

Highlights

  • Regulated gene networks, precisely controlling the expression of protein molecules, have received considerable interest by the biomedical community due to their promising applications

  • The most widely used inducible transcription systems that largely meet these criteria are the tetracycline regulatory expression systems based on the tetracycline resistance operon of Escherichia coli (E. coli) [4]

  • Four novel networks based on the tetracycline regulated system Based on the components of Tet-Off, Tet-On and the tetracycline resistance operon of E. coli we introduce four novel model networks that address limitations present in current designs

Read more

Summary

Introduction

Precisely controlling the expression of protein molecules, have received considerable interest by the biomedical community due to their promising applications. Among the most well studied inducible transcription systems are the tetracycline regulatory expression systems based on the tetracycline resistance operon of Escherichia coli, Tet-Off (tTA) and Tet-On (rtTA). Despite their initial success and improved designs, limitations still persist, such as low inducer sensitivity. Precisely controlling the expression of protein molecules, have received considerable interest [1] by the biomedical community due to their promising applications. The most widely used inducible transcription systems that largely meet these criteria are the tetracycline regulatory expression systems based on the tetracycline resistance operon of Escherichia coli (E. coli) [4]. Tet-Off and Tet-On systems, known as rTA and rtTA, respectively, are among the most well studied systems of this category [5,6,7,8]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.