Abstract

Easily synthesizable, carbazole-based organic nanoaggregates have been designed for selective detection of D-(-)-ribose at physiological pH. The addition of D-ribose results in a ratiometric change in fluorescence color from green to cyan (LOD: ∼12 μM). The mechanistic studies indicate the presence of multipoint noncovalent interactions, such as hydrogen bonding and CH⋅⋅⋅π interactions between D-ribose and acyl hydrazone and terminal pyridyl units of the probe molecule. However, such multipoint interactions dissociate the preformed self-assembled nanoclusters and induce change in optical response. The probe molecule was further exploited in analyzing D-ribose content in biological fluids (diluted human urine and blood serum) and oral supplements. The small standard deviation values (2-3.8 %) with nearly quantitative recovery (93.5-105.5 %) indicate the high accuracy of the presented method. Further, low-cost portable device based coated paper strips were designed for 'on-location' rapid, detection of D-ribose even at remote locations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call