Abstract

Various sulfonamide derivatives are intensively studied as anticancer agents owing to their inhibitory activity against human tumor-associated carbonic anhydrase isoforms. In this work, different synthetic procedures for the series of 1,3,5-triazinyl-aminobenzenesulfonamide conjugates with amino acids, possessing polar uncharged, negatively charged, and hydrophobic side chain, were studied and optimized with respect to the yield/purity of the synthesis/product as well as the time of synthetic reaction. These procedures were compared to each other via characteristic HPLC-ESI-DAD/QTOF/MS analytical product profiles, and their benefits as well as limitations were discussed. For new sulfonamide derivatives, incorporating s-triazine with a symmetric pair of polar and some less-polar proteinogenic amino acids, inhibition constants (KIs) against four human carboanhydrases (hCAs), namely cytosolic hCA I, II, transmembrane hCA IV, and the tumor-associated, membrane-bound hCA IX isoforms, were computationally predicted applying various methods of the advanced statistical analysis. Quantitative structure-activity relationship (QSAR) analysis indicated an impressive KI ratio (hCA II/hCA IX) 139.1 and hCA IX inhibition constant very similar to acetazolamide (KI = 29.6 nM) for the sulfonamide derivative disubstituted with Gln. The derivatives disubstituted with Ser, Thr, and Ala showed even lower KIs (8.7, 13.1, and 8.4 nM, respectively).

Highlights

  • Human carbonic anhydrase IX is a zinc metalloenzyme with extracellular active site catalyzing reversible hydration of carbon dioxide to regulate the acid-base balance. human carboanhydrases (hCAs) IX differs from other hCA isozymes in several properties

  • Hypoxic tumor microenvironment is upregulated by hypoxia-inducible factor 1 (HIF) that activates a gene expression of mediators in various enzymatic pathways and angiogenesis such as glucose transporters, vascular endothelial growth factor as well as hCA IX [5,6]

  • The newly proposed water based synthetic strategies represent an attractive solution for the preparation of 1,3,5-triazinyl-substituted benzenesulfonamide derivatives containing a symmetric pair of the amino acids with various polarities

Read more

Summary

Introduction

Human carbonic anhydrase IX (hCA IX) is a zinc metalloenzyme with extracellular active site catalyzing reversible hydration of carbon dioxide to regulate the acid-base balance. hCA IX differs from other hCA isozymes in several properties. Human carbonic anhydrase IX (hCA IX) is a zinc metalloenzyme with extracellular active site catalyzing reversible hydration of carbon dioxide to regulate the acid-base balance. The main structural difference is a presence of the N-terminal proteoglycan-like (PG) domain in the extracellular protein part [1,2]. The PG domain plays a substantial role in adhesion, proliferation, and cell invasion under hypoxia and acidosis microenvironment conditions often contained in solid tumors [3,4]. Hypoxic tumor microenvironment is upregulated by hypoxia-inducible factor 1 (HIF) that activates a gene expression of mediators in various enzymatic pathways and angiogenesis such as glucose transporters, vascular endothelial growth factor as well as hCA IX [5,6]. HCA IX is only rarely expressed in normal tissues (such as the gastric mucosa, pancreas, and intestine) [18], it can be considered to be a highly selective tumor marker

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call