Abstract

Compounds of antimony(III) with mixed sulfur donor ligands of the type [(ROCS2)2SbS2CNR′2] (where, R=C2H5, and iC3H7; R′=CH3, C2H5, and CH2CH2) have been synthesized using anhydrous acetone as a solvent by the one pot reaction of antimony(III) tris(O-alkyldithiocarbonato-S,S′), antimony(III) chloride and sodium/ammonium salt of dialkyldithiocarbamate in 2:1:3molar ratios. These compounds have been characterized by physicochemical [melting points, molecular weight determinations, elemental analyses (C, H, N, S, and Sb)], spectral [UV, IR, Far-IR and NMR (1H and 13C)] studies. In IR spectra strong band was observed at 1028–1051cm–1 which indicates anisobidentate mode of bonding of both the ligands with antimony metal. NMR spectral data of these compounds show expected proton resonance due to corresponding moieties. The powder XRD, ESI-Mass and thermal (TG and DTA) studies have also been performed to get the information about geometrical parameters, fragmentation pattern and last thermal decomposition product, respectively. The powder XRD studies lead to the structural properties of the synthesized compounds and show the nanorange crystallite size and monoclinic crystal system. Thermal data of these compounds indicate the formation of antimony sulfide (Sb2S3) as a final thermal degradation product which is used in a number of ways like switching devices television cameras and microwave devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call