Abstract

In the field of synthetic organic chemistry, photochemical and electrochemical approaches are often considered to be competing technologies that induce single electron transfer (SET). Recently, their fusion, i. e., the "photoelectrochemical" approach, has become the focus of attention. In this approach, both solar and electrical energy are used in creative combinations. Historically, the term "photoelectrochemistry" has been used in more inorganic fields, where a photovoltaic effect exhibited by semiconducting materials is employed. Semiconductors have also been studied intensively as photocatalysts; however, they recently have taken a back seat to molecular photocatalysts. In this account, we would like to revisit semiconductor photocatalysts in the field of synthetic organic chemistry to demonstrate that semiconductor "photoelectrochemical" approaches are more than mere alternatives to molecular photochemical and/or electrochemical approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call