Abstract

The ongoing global pandemic of coronavirus disease 2019 (COVID-19) calls for an urgent development of effective and safe prophylactic and therapeutic measures. The spike (S) glycoprotein of severe acute respiratory syndrome-coronavirus (SARS-CoV-2) is a major immunogenic and protective protein and plays a crucial role in viral pathogenesis. In this study, we successfully constructed a synthetic codon-optimized DNA-based vaccine as a countermeasure against SARS-CoV-2, denoted VIU-1005. The design was based on a codon-optimized coding sequence of a consensus full-length S glycoprotein. The immunogenicity of the vaccine was tested in two mouse models (BALB/c and C57BL/6J). Th1-skewed systemic S-specific IgG antibodies and neutralizing antibodies (nAbs) were significantly induced in both models 4 weeks after three injections with 100 μg of the VIU-1005 vaccine via intramuscular needle injection but not intradermal or subcutaneous routes. Such immunization induced long-lasting IgG and memory T cell responses in mice that lasted for at least 6 months. Interestingly, using a needle-free system, we showed an enhanced immunogenicity of VIU-1005 in which lower or fewer doses were able to elicit significantly high levels of Th1-biased systemic S-specific immune responses, as demonstrated by the significant levels of binding IgG antibodies, nAbs and IFN-γ, TNF and IL-2 cytokine production from memory CD8+ and CD4+ T cells in BALB/c mice. Furthermore, compared to intradermal needle injection, which failed to induce any significant immune response, intradermal needle-free immunization elicited a robust Th1-biased humoral response similar to that observed with intramuscular immunization. Together, our results demonstrate that the synthetic VIU-1005 candidate DNA vaccine is highly immunogenic and capable of inducing long-lasting Th1-skewed humoral and cellular immunity in mice. Furthermore, we show that the use of a needle-free system could enhance the immunogenicity and minimize doses needed to induce protective immunity in mice, supporting further preclinical and clinical testing of this candidate vaccine.

Highlights

  • Since its emergence in December 2019, the coronavirus disease 2019 (COVID-19) pandemic has caused ∼170 million infections with nearly more than 3.5 million deaths worldwide as of June 2021

  • We developed a synthetic codon-optimized DNA vaccine, denoted “VIU-1005,” as a countermeasure to aid in controlling SARSCoV-2 spread

  • To further improve the immunogenicity of the naked synthetic DNA vaccine and minimize the number and size of doses, we investigated the use of a needle-free Tropis system with our vaccine in BALB/c mice in a separate experiment (Figure 5A)

Read more

Summary

Introduction

Since its emergence in December 2019, the coronavirus disease 2019 (COVID-19) pandemic has caused ∼170 million infections with nearly more than 3.5 million deaths worldwide as of June 2021. A novel betacoronavirus (beta-CoV) known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the causative agent of COVID-19 (Lu et al, 2020; Zhu et al, 2020). SARS-CoV-2 can cause a wide spectrum of disease manifestations in individuals from different age groups. Some patients can suffer from moderate to severe life-threatening acute respiratory distress syndrome (ARDS) with possible fatal outcomes (Jin et al, 2020; Rodriguez-Morales et al, 2020; Wang et al, 2020). The high human-to-human transmission rate of SARS-CoV-2 poses a major challenge toward controlling its spread (Adhikari et al, 2020; Bai et al, 2020; Xu et al, 2020b)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call