Abstract

[1] We present 2 1/2 D numerical MagnetoHydroDynamic (MHD) simulations of coronal mass ejections (CMEs) in conjunction with plasma simulations of radio emission from the CME-driven shocks. The CME-driven shock extends to an almost spherical shape during the temporal evolution of the CME. Our plasma simulations can reproduce the dynamic spectra of coronal type II radio bursts, with the frequency drift rates corresponding to the shock speeds. We find further, that the CME-driven shock is an effective radio emitter at metric wavelengths, when the CME has reached a heliocentric distance of about two solar radii (). We apply our simulation results to explain the radio images of type II bursts obtained by radio heliographs, in particular to the banana-shaped images of radio sources associated with fast CMEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.