Abstract

The components of natural quorum-sensing (QS) systems can be used to engineer synthetic communication systems that regulate gene expression in response to chemical signals. We have used the machinery from the peptide-based agr QS system from Staphylococcus aureus to engineer a synthetic QS system in Bacillus megaterium to enable autoinduction of a target gene at high cell densities. Growth and gene expression from these synthetic QS cells were characterized in both complex and minimal media. We also split the signal production and sensing components between two strains of B. megaterium to produce sender and receiver cells and characterized the resulting communication in liquid media and on semisolid agar. The system described in this work represents the first synthetic QS and cell-cell communication system that has been engineered to function in a Gram-positive host, and it has the potential to enable the generation of dynamic gene regulatory networks in B. megaterium and other Gram-positive organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.