Abstract
This paper is focused on preparation and determination of physicochemical properties of new composite glass protonic membranes (P2O5–SiO2–TiO2) with the addition of PVA which could be a crucial modification for their application as electrolytic materials in fuel cells operating in the temperature range 30–150°C. Samples were obtained through sol–gel process with post-thermal treatment of the obtained hydrogel. The process was realized under FTIR and Raman spectroscopies control of the reaction progress. XRD was used to prove the amorphisicity of the samples. Two interesting correlations were observed during a more detailed analysis of conductivity data. One of them correlates endothermic transition observed in the DTA traces with TD value for ionic lattice in the samples while the other shows that the dimensionality of the conductivity process can be correlated with the sample surface area. The preliminary tests of the samples in fuel cells operated with hydrogen showed stable values of OCV in the whole investigated temperature range. Current density and power increase with temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.