Abstract

In this report, we describe design, synthesis, evaluation and molecular dynamics simulations of synthetic multifunctional pores with pi-acidic naphthalenediimide clamps. Experimental evidence is provided for the formation of unstable but inert, heterogeneous and acid-insensitive dynamic tetrameric pores that are sensitive to base and ionic strength. Blockage experiments reveal that the introduction of aromatic electron donor-acceptor interactions provides access to the selective recognition of pi-basic intercalators within the pore. This breakthrough is important for the application of synthetic pores as multianalyte sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.