Abstract

It has been suggested that proteasome activity is essential for tumor cell proliferation and drug resistance development. We have previously shown that natural and synthetic ester bond-containing tea polyphenols are selective inhibitors of the chymotrypsin-like activity of the proteasome. The most abundant catechin in green tea is (-)-epigallocatechin-3-gallate [(-)-EGCG], which has been found by many laboratories to exhibit the most potent anticancer activity. We have reported that (-)-EGCG is also the most effective proteasome inhibitor among all the natural green tea catechins tested. Unfortunately, (-)-EGCG is very unstable in neutral and alkaline conditions. In an attempt to increase the stability and thus the efficacy, we synthesized several (-)-EGCG analogs with acetyl protected -OH groups as prodrugs. Here we report, for the first time, that these acetylated synthetic tea analogs are much more potent than natural (-)-EGCG in inhibiting the proteasome in cultured tumor cells. Consistently, these protected analogs showed much higher potency than (-)-EGCG to inhibit proliferation and transforming activity and to induce apoptosis in human leukemic, prostate, breast, and simian virus 40-transformed cells. Additionally, these protected analogs had greatly reduced effects on human normal and non-transformed cells. Therefore, these peracetate protected tea polyphenols are more efficacious than (-)-EGCG and possess great potential to be developed into novel anticancer drugs. Identification of the cytosolic metabolite(s) of peracetate-protected polyphenols in cultured tumor cells and examination of their in vivo tumor growth-inhibitory activity are currently underway in our laboratory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.