Abstract

SUMMARYPreviously, researchers discovered a series of anti-CRISPR proteins that inhibit CRISPR-Cas activity, such as Cas9 and Cpf1 (Cas12a). Herein, we constructed crRNA variants consisting of chemically modified DNA-crRNA and RNA-crRNA duplexes and identified that phosphorothioate (PS)-modified DNA-crRNA duplex completely blocked the function of Cpf1. More important, without prehybridization, these PS-modified DNA oligonucleotides showed the ability to suppress DNA double-strand breaks induced by two Cpf1 orthologs, AsCpf1 and LbCpf1. Time-dependent inhibitory effects were validated in multiple loci of different human cells. Further studies demonstrated that PS-modified DNA oligo-nucleotides were able to serve as Cpf1 inhibitors in a sequence-independent manner. Mechanistic studies indicate that PS-modified DNA oligonucleotides hinder target DNA binding and recognition by Cpf1. Consequently, these synthetic DNA molecules expand the sources of CRISPR inhibitors, providing a platform to inactivate Cpf1-mediated genome editing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.