Abstract

AbstractSynthetic oligodeoxynucleotides (ODNs) comprised of the immunosuppressive motif TTAGGG block TLR9 signaling, prevent STAT1 and STAT4 phosphorylation and attenuate a variety of inflammatory responses in vivo. In this study, we demonstrate that such suppressive ODN abrogate activation of cytosolic nucleic acid–sensing pathways. Pretreatment of dendritic cells and macrophages with the suppressive ODN-A151 abrogated type I IFN, TNF-α, and ISG induction in response to cytosolic dsDNA. In addition, A151 abrogated caspase-1–dependent IL-1β and IL-18 maturation in dendritic cells stimulated with dsDNA and murine CMV. Inhibition was dependent on A151’s phosphorothioate backbone, whereas substitution of the guanosine residues for adenosine negatively affected potency. A151 mediates these effects by binding to AIM2 in a manner that is competitive with immune-stimulatory DNA and as a consequence prevents AIM2 inflammasome complex formation. Collectively, these findings reveal a new route by which suppressive ODNs modulate the immune system and unveil novel applications for suppressive ODNs in the treatment of infectious and autoimmune diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.