Abstract

Several macroscopic physical and chemical properties, such as rheology, elasticity, or transport properties are governed by grain boundary processes. An improved understanding of the structure and evolution of grain boundaries has thus become a key challenge in geosciences and material sciences. Here, we report the structure of near Σ5 (210)/[100] grain boundaries in Y3Al5O12 (YAG), which were synthesised by the wafer direct bonding method. The produced grain boundaries were annealed at different temperatures, ranging from 673 to 1,873 K. The grain boundaries annealed at different temperatures are not distinguishable based on their flatness and apparent cohesiveness in high resolution TEM (HRTEM) micrographs, but show a considerable step in their mechanical stability at around 1,273 K, a temperature that corresponds to roughly half the melting temperature of YAG. This study further focuses on the effect of a slight misorientation of the two crystals on the grain boundary structure and we discuss if the boundary can reach a state of minimum energy configuration during annealing. Along the grain boundaries, we observed a long-range strain contrast with a periodicity of 40 nm, which has not been reported for high-angle grain boundaries so far. We conclude that this contrast is caused by faceting along the grain boundary plane, which is needed to achieve minimum energy configuration of the grain boundary plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.