Abstract

Storing hydrogen gas into cylinders under high pressure of 350 bar is not safe and still needs many intensive studies dedic ated for tank’s manufacturing. Liquid hydrogen faces also severe practical difficulties due to its very low density, leading to larger fuel tanks three times larger than traditional gasoline tank. Moreover, converting hydrogen gas into liquid phase is not an economic process since it consumes high energy needed to cool down the gas temperature to −252.8 °C. One practical solution is storing hydrogen gas in metal lattice such as Mg powder and its nanocomposites in the form of MgH2. There are two major issues should be solved first. One related to MgH2 in which its inherent poor hydrogenation/dehydrogenation kinetics and high thermal stability must be improved. Secondly, related to providing a safe tank. Here we have succeeded to prepare a new binary system of MgH2/5 wt. % TiMn2 nanocomposite powder that show excellent hydrogenation/dehydrogenation behavior at relatively low temperature (250 °C) with long cycle-life-time (1400 h). Moreover, a simple hydrogen storage tank filled with our synthetic nanocomposite powders was designed and tested in electrical charging a battery of a cell phone device at 180 °C through a commercial fuel cell.

Highlights

  • Hydrogen is an energy carrier, which holds tremendous promise as a new clean energy option[1,2]

  • Apart from the interesting and useful solid hydrogen storage models invented by many authors, our present has been addressed to satisfy two objectives; the first is focused on synthesizing and characterizing a new nanocomposite MgH2/5 wt. % TiMn2 system with advanced kinetics behaviors and cyclability, where the second objective is focused on utilizing the as-synthesized nanocomposite powders in a self-manufactured hydrogen storage tank interfaced to 40 W/4.5 A proton exchange membrane (PEM) fuel cell

  • The general and local structure beyond the nano level for the nanocomposite MgH2/5 wt. % TiMn2 powders were investigated by means of X-ray diffraction (XRD) and field emission-high resolution transmission electron microscope (FE-HRTEM) techniques, respectively

Read more

Summary

Solid Hydrogen

Apart from gaseous and liquidus phases of hydrogen, solid hydrogen has been considered as the most reliable and safe practical solution for providing clean energy required for different applications, using proper fuel cells such as proton-exchange fuel cells membrane (PEM)[9]. An interesting study was reported by Ouyang et al.[23] when they successfully prepared Mg2In0.1Ni solid solution with an Mg2Ni-type structure They pointed out that the introduction of In-semimetal into Mg2Ni significantly improved the dehydrogenation kinetics and greatly lowered the thermodynamic stability. Apart from the milling process employed for preparing MgH2 nanocrystalline and MgH2-based nanocomposite powders, direct current magnetron sputtering technique was successfully employed in 2004 by Ouyang et al.[33] for preparing multi-layer hydrogen storage thin films with Mg and MmNi3.5(CoAlMn)1.5 They reported that this technique can led to the formation of high quality nano-scale multi-layer composite with well-controlled film thickness and well-bonded interface between the multilayers[33]. One advantage of this promising technique can be realized from its ability on synthesizing ultra-thin films (4 nm) with clean interfaces

Solid Hydrogen Tanks
Results and Discussion
Methods
Author Contributions
Additional Information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.