Abstract

Adjuvant immunotherapy has recently emerged as a potential treatment strategy for breast cancer. The tumor-associated protein mucin 1 (MUC1) has received increasing attention due to its high expression in numerous types of common tumors, in which MUC1 acts as a cancer antigen. However, the simple mixed composition of an adjuvant and a peptide is not a sufficient rationale for a MUC1 peptide-based vaccine. The present study developed a novel Toll-like receptor 7 (TLR7) agonist-conjugated MUC1 peptide vaccine (T7-MUC1), which elicited an effective immune response and a robust antitumor effect in a mouse breast cancer model. In vitro, T7-MUC1 significantly increased the release of cytokines in mouse bone marrow dendritic cells and spleen lymphocytes, and induced the dendritic cell-cytokine-induced killer response against tumor cells with high MUC1 expression. In vivo, it was observed that the 4T1 tumor weights in mice immunized with the T7-MUC1 conjugate were reduced by ≥70% compared with those in the control group. Furthermore, the therapeutic responses in vivo were attributed to the increase in specific humoral and cellular immunity, including high antibody titers, antibody-dependent cell-mediated cytotoxicity and cytotoxic T-lymphocyte activity. The percentages of CD3+/CD8+ T-cells were significantly higher in the T7-MUC1 treatment group compared with those in the control group. Therefore, the results of the present study suggested that the T7-MUC1 vaccine inhibited tumor growth in mice and thus may have potential as a therapeutic candidate in clinical trials for breast cancer immunotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call