Abstract

Endolysins are bacteriophage-encoded hydrolases that show high antibacterial activity and a narrow substrate spectrum. We hypothesize that a mRNA-based approach to endolysin therapy can overcome some challenges of conventional endolysin therapy, namely organ targeting and bioavailability. We show that synthetic mRNA applied to three human cell lines (HEK293T, A549, HepG2 cells) leads to expression and cytosolic accumulation of the Cpl-1 endolysin with activity against Streptococcus pneumoniae. Addition of a human lysozyme signal peptide sequence translocates the Cpl-1 to the endoplasmic reticulum leading to secretion (hlySP-sCpl-1). The pneumococcal killing effect of hlySP-sCpl-1 was enhanced by introduction of a point mutation to avoid N-linked-glycosylation. hlySP-sCpl-1N215D, collected from the culture supernatant of A549 cells 6 hours post-transfection showed a significant killing effect and was active against nine pneumococcal strains. mRNA-based cytosolic Cpl-1 and secretory hlySP-sCpl-1N215D show potential for innovative treatment strategies against pneumococcal disease and, to our best knowledge, represent the first approach to mRNA-based endolysin therapy. We assume that many other bacterial pathogens could be targeted with this novel approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call