Abstract

The yield of l-phenylalanine, racemic phenyllactic acid, and prephenic acid synthesized from glucose has been doubled and contamination of these aromatic end products by biosynthetic intermediates drastically reduced. These improvements resulted from increasing the in vivo catalytic activity of specific enzymes in the common pathway of aromatic amino acid biosynthesis by chromosomal modification of Escherichia coli. The centerpiece of these changes was the synthesis of a multigene cassette carrying aroA (encoding EPSP synthase), aroC (encoding chorismate synthase), and aroB (encoding DHQ synthase). Chromosomal insertion of the synthesized multigene cassette into E. coli KAD29B, a strain having a mutation in the tyrR locus which relieves transcriptional repression of aroL (encoding shikimate kinase), resulted in biocatalysts KAD1D and KAD11D. Improved catalytic activities of individual common pathway enzymes have previously been accomplished with extrachromosomal plasmids encoding the appropriate loci. By ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.