Abstract
Bank or financial institution is a business entity whose activities are collecting funds from the public in the form of deposits and channeling them to the public in the form of credit and or other forms. In credit financing problems often occur and one of the problems faced in credit assessment is imbalance class data sets or dataset class imbalances. This problem can be overcome by resampling method, namely by using Oversampling, undersampling and hybrids that combine the two sampling approaches. This research proposes the method of applying SMOTE or Synthetic Minority Oversampling Technique on Averaged One Dependence estimators (AODE) to improve the performance of the accuracy of the credit rating classification on German Credit Creditetsets. The results of this experimental study on the GermanCredit dataset with the classification method without the Resampling process on 13 classifiers produce an average performance value of 70%. The results of the classification with classification techniques that apply the SMOTE method on the AODE algorithm can increase the accuracy performance by 5.5% with an accuracy value of 0.817 or 81.69%. While the classification technique that applies the SpreadSubSample + AODE method decreased by 0.041 or 4.1% but still higher than the accuracy value of other methods with an accuracy value of 0.723 or 72.33%. The researcher concludes that by applying the Resampling technique with the SMOTE method on the AODE algorithm can increase the value of accuracy performance effectively on the imbalance class used for credit scoring or credit rating on GermanCredit datasets.
Highlights
Bank or financial institution is a business entity whose activities are collecting funds from the public in the form of deposits and channeling them to the public in the form of credit and or other forms
The results of the classification with classification techniques that apply the Synthetic Minority Oversampling Technique (SMOTE) method on the Averaged One Dependence estimators (AODE) algorithm can increase the accuracy performance by 5.5% with an accuracy value of 0.817 or 81.69%
Dynamic classifier ensemble model for customer classification with imbalance class distribution
Summary
UU Perbankan No X tahun 1998 menerangkan bahwa bank adalah perusahaan yang kegiatannya menghimpun dana masyarakat dalam bentuk tabungan dan kredit dan atau bentuk meningkatkan kesejahteraan UU tersebut, segala bentuk lainnya dalam rangka masyarakat. Pada penelitian experimen sebelumnya telah menunjukkan perkiraan P(.), F(.) mengusulkan dengan menerapkan metode Random adalah frekuensi dengan mana argumen muncul dalam Over-Under Sampling RandomForest untuk data sampel dan m adalah frekuensi minimum yang memecahkan masalah ImbalanceClass atau data tidak ditentukan pengguna dengan istilah yang harus muncul seimbang pada klasifikasi kredit. Naive Bayes yang membuat asumsi independensi di akurasi dengan efektif pada klasifikasi tidak seimbang atas menjadi lebih lemah (dan karenanya berpotensi untuk creditscoring atau penilaian kredit pada dataset sangat kurang) daripada asumsi independensi Naive German Credit. Datasets yang komparasi serta mengevaluasi model ensemble dengan digunakan pada penelitian atau eksperimen ini adalah menggunakan Averaged One Dependence estimators menggunakan datasets GermanCredit yang terdiri dari atau AODE dan metode resampling untuk analisis 21 atribut dan 1000 instance serta 2 kelas atau class algoritma mana yang memiliki nilai akurasi lebih tinggi yaitu kelas atau class “good” atau "baik" dan kelas atau pada klasifikasi imbalance class atau data tidak class “bad” atau" buruk". Eksperimen penelitian dilakukan untuk menghasilkan nilai akurasi atau accuracy yang paling tinggi dengan metode yang diusulkan yaitu membandingkan teknik metode AODE dengan beberapa teknik metode lainnya dengan menerapkan teknik resampling seperti SMOTE dan SpreadSubSample ataupun tanpa teknik resampling
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.