Abstract

Synthetic microbial consortia consisting of microorganisms with different synthetic genetic circuits or divided synthetic metabolic pathway components can exert functions that are beyond the capacities of single microorganisms. However, few consortia of microorganisms with different synthetic genetic circuits have been developed. We designed and constructed a synthetic microbial consortium composed of an enzyme-producing strain and a target chemical-producing strain using Escherichia coli for chemical production with efficient saccharification. The enzyme-producing strain harbored a synthetic genetic circuit to produce beta-glucosidase, which converts cellobiose to glucose, destroys itself via the lytic genes, and release the enzyme when the desired cell density is reached. The target chemical-producing strain was programmed by a synthetic genetic circuit to express enzymes in the synthetic metabolic pathway for isopropanol production when the enzyme-producing strain grows until release of the enzyme. Our results demonstrate the benefits of synthetic microbial consortia with distributed tasks for effective chemical production from biomass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call