Abstract

Synthetic biology is an emerging research field that focuses on using rational engineering strategies to program biological systems, conferring on them new functions and behaviours. By developing genetic parts and devices based on transcriptional, translational, post-translational modules, many genetic circuits and metabolic pathways had been programmed in single cells. Extending engineering capabilities from single-cell behaviours to multicellular microbial consortia represents a new frontier of synthetic biology. Herein, we first reviewed binary interaction modes of microorganisms in microbial consortia and their underlying molecular mechanisms, which lay the foundation of programming cell-cell interactions in synthetic microbial consortia. Systems biology studies on cellular systems enable systematic understanding of diverse physiological processes of cells and their interactions, which in turn offer insights into the optimal design of synthetic consortia. Based on such fundamental understanding, a comprehensive array of synthetic microbial consortia constructed in the last decade were reviewed, including isogenic microbial communities programmed by quorum sensing-based cell-cell communications, sender-receiver microbial communities with one-way communications, and microbial ecosystems wired by two-way (bi-directional) communications. Furthermore, many applications including using synthetic microbial consortia for distributed bio-computations, chemicals and bioenergy production, medicine and human health, and environments were reviewed. Synergistic development of systems and synthetic biology will provide both a thorough understanding of naturally occurring microbial consortia and rational engineering of these complicated consortia for novel applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.