Abstract

The potato dry rot disease caused by Fusarium spp. seriously reduces potato yield and threatens human health. However, potential biocontrol agents cannot guarantee the stability and activity of biocontrol. Here, 18 synthetic microbial communities of different scales were constructed, and the synthetic microbial communities with the best biocontrol effect on potato dry rot disease were screened through in vitro and in vivo experiments. The results show that the synthetic community composed of Paenibacillus amylolyticus, Pseudomonas putida, Acinetobacter calcoaceticus, Serratia proteamaculans, Actinomycetia bacterium and Bacillus subtilis has the best biocontrol activity. Metabolomics results show that Serratia protoamaculans interacts with other member strains to produce caproic acid and reduce the disease index to 38.01%. Furthermore, the mycelial growth inhibition after treatment with caproic acid was 77.54%, and flow cytometry analysis showed that the living conidia rate after treatment with caproic acid was 11.2%. This study provides potential value for the application of synthetic microbial communities in potatoes, as well as the interaction mechanisms between member strains of synthetic microbial communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.